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Abstract The purpose of this work is to model the

mechanical behavior of nanocrystalline materials.

Based on previous rigid viscoplastic models proposed

by Kim et al. (Acta Mater, 48: 493, 2000) and Kim and

Estrin (Acta Mater, 53: 765, 2005), the nanocrystalline

material is described as a two phase composite mate-

rial. Using the Taylor–Lin homogenisation scheme in

order to account for elasticity, the yield stress of

nanocrystalline materials can be evaluated. The tran-

sition from a Hall–Petch relation to an inverse Hall–

Petch relation is defined and is related to a change in

plastic deformation mode in the crystallite phase from

a dislocation glide driven mechanism to a diffusion-

controlled process.

Introduction

With the advent of nanostructured materials, there has

been a growing interest—both in the materials science

and in the mechanics communities—in reliable con-

stitutive models describing the mechanical response of

bulk nanomaterials. Obviously, by the very nature of

the problem, internal structure associated with ultra

fine crystallinity of the material, as well as grain

boundary effects, need to figure prominently in such a

model, one particular requirement being an adequate

description of the grain size effects. The experimental

literature on the grain size dependent mechanical

properties of nanocrystalline materials and the existing

modelling approaches to their behaviour are summa-

rised in an excellent review by Meyers et al. [1].

In a nanocrystalline material, whose grain size d by a

common definition is smaller than 100 nm, the grain

boundaries make up a significant volume fraction of

the material. As the constitutive behaviour of the grain

boundary regions and the grain interior are radically

different, cf. [1], it is a natural thought to consider a

nanocrystalline material as a ‘phase mixture’ and apply

a rule of mixtures as a modelling tool. Such approach

was taken in the work by [2–7].

The phase mixture model proposed by Kim et al. [2]

and Kim and Estrin [3] (see also Estrin et al. [7]) was

based on a combination of dislocation glide diffusion

controlled mechanisms for grain interior deformation

and purely diffusional flow of the grain boundary

phase. The model was shown to capture the most

significant features of strength and plasticity of nano-

crystalline materials, such as the breakdown of the

Hall–Petch relation for very small grain sizes, and to

adequately represent their strain hardening behaviour.

However, some quantitative discrepancies between the

model predictions and the experimental data for

copper were found. While these discrepancies may be

partly associated with the ’inborn’ flaws of the test

material inherent in the processing techniques used, we
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CNRS 7554, Université Paul Verlaine-Metz, Ile du Saulcy
57045 Metz, France
e-mail: sebastien.mercier@univ-metz.fr

A. Molinari
e-mail: alain.molinari@univ-metz.fr

Y. Estrin
Institute of Materials Science and Technology, Clausthal
University of Technology, Agricolastr. 6, 38678 Clausthal-
Zellerfeld, Germany
e-mail: juri.estrin@tu-clausthal.de

J Mater Sci (2007) 42:1455–1465

DOI 10.1007/s10853-006-0670-y

123



now believe that part of the problem was that elasticity

was disregarded. Also, the topology of the grain and

grain boundary structure was not accounted for.

Since a nanomaterial can be described as a two

phase material, different homogenization schemes can

be used to describe the material response of such

material. Capolungo et al. [8, 9] used a self-consistent

scheme representing the interior of a grain as an

ellipsoidal Eshelby-type inclusion and also modified

the description of the grain boundary deformation.

Jiang and Weng [10] have proposed a generalized self-

consitent approach based on the Christensen and Lo’s

[11] and Luo and Weng’s [12] works. The plastic

behaviour of the grain interior phase is described by

crystal plasticity and the grain boundary phase is

considered as an amorphous material. Instead of

adopting a self-consistent scheme, we propose to use

the Taylor–Lin approach to include elasticity [13], in

conjunction with the original model due to [2, 3]. The

present authors have tested also an extension of the

Mori–Tanaka approach [14] based on an interaction

law proposed by Molinari [15] for elastic-viscoplastic

materials. Since the volume fraction of grain boundary

remains limited (at least for nanocrystalline materials

with average grain size over 20 nm), the Taylor–Lin

and the Mori–Tanaka approaches provide similar

results so that only results obtained via the Taylor–

Lin scheme are reported in the present contribution.

While in considering the case of strain rate inde-

pendent rigid plasticity Taylor [16] assumed that each

grain is subjected to the same uniform plastic strain in

all grains of a polycrystal, Lin [13] extended Taylor’s

model to include elastic strains as well. In the Taylor–

Lin scheme, the total deformation (elastic plus plas-

tic) in each grain is equal to the imposed total

deformation of the polycrystalline aggregate. This

model has been used extensively to predict the

development of textures in polycrystals under

monotonic loadings [17, 18], the cyclic behavior of

polycrystalline metals [19, 20] and the low cycle

fatigue response of materials [21, 22]. Since the main

goal of the present work is to predict the yield stress

of nanocrystalline materials, the interplay between the

elastic and viscoplastic response of the constituents of

the ’phase mixture’ needs to be taken into account.

The Taylor–Lin scheme provides a suitable frame for

that. It will be shown that the use of the Taylor–Lin

scheme in conjunction with the original model [2, 3]

does possess an improved predictive capability and

can be recommended for describing the mechanical

behaviour of bulk nanocrystalline materials.

Modelling

Following the model by [2, 3], a nanocrystalline

material is described as a two phase composite mate-

rial. A crystallite (the grain interior) is considered to be

embedded in the grain boundary phase. Both phases

(crystallite and grain boundary) are assumed to be

homogeneous. From a topological point of view, the

crystallite can be considered as the inclusion phase and

the grain boundary as the matrix phase. Nevertheless,

the volume fraction of grain boundary (the matrix

phase) is limited. For nanocrystalline materials with an

average grain size of 10 nm, the matrix phase is about

30%. The macroscopic nanocrystalline material is

described as an aggregate of spherical grains, with

different grain sizes. A log-normal distribution of the

grain sizes is assumed, cf. Fig. 1 that gives a schematic

representation of the aggregate. Some measurements

available in the literature [23–25] do corroborate this

type of distribution. The distribution of grain diameter

d is governed by the probability density function:

PðdÞ ¼ 1

ð2pÞ
1
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Fig. 1 Schematic
representation of a
nanocrystalline material. The
crystallite phase is embedded
in the grain boundary phase.
The grain size distribution in
the material is represented by
Eq. 1. Each grain is assumed
to be subjected to the
macroscopic strain rate. A
Taylor–Lin scheme is adopted
to derive the macroscopic
behavior of the aggregate
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where do and r are constant parameters. The mean size
�d and the variance ~r , quantities that can be obtained

from experiment, are linked to do and r through the

following relations:

�d ¼ doexpð1
2
r2Þ ~r ¼ d2

o expðr2Þðexpðr2Þ � 1Þ ð2Þ

A Taylor–Lin scheme is adopted for deriving the

macroscopic behavior of the nanocrystalline material,

implying that each grain is subjected to the same strain

rate tensor, equal to the macroscopic tensor D , see

Fig. 1. Owing to this assumption, the topology of the

grain and grain boundary structure is not accounted for

except through the volume fraction of grain interior

phase. A Mori–Tanaka scheme would have been able

to describe the topology of a nanomaterial in a better

way. Nevertheless, as mentioned in the previous

section, results within the Mori–Tanaka approach were

similar so that only the Taylor–Lin approach is

developed in the present contribution.

Both phases of the grain are considered to exhibit

elastic-viscoplastic behaviour. Incompressible elasticity

is assumed. The general case of compressible elasticity

can be easily treated with the Taylor–Lin approach by

decomposition of the deviatoric and spherical parts of

the stress and strain-rate tensors. In the Taylor–Lin

approach, deviatoric and spherical parts can be decou-

pled for isotropic materials. Only the hydrostatic

pressure will be affected by the elastic compressibility.

The model of plastic flow of a nanocrystalline

material developed by [2, 3] is briefly summarised

below, in the context of the Taylor–Lin formulation,

i.e. including elasticity. For the grain boundary phase,

the elastic contribution is described by the following

law:

_sGB ¼ 2lGBðdGB � d
vp
GBÞ ð3Þ

where dGB and d
vp
GB are the tensors of the total and the

viscoplastic strain rate, respectively. As prescribed by

the Taylor–Lin assumption, dGB ¼ D . The rate of the

deviatoric Cauchy stress tensor has been denoted _sGB ,

the shear modulus lGB of the grain boundary material

has been introduced. Using a J2 flow theory, the

viscoplastic behaviour of the grain boundary, governed

by diffusional mechanism, see [2], is expressed by the

Prandtl–Reuss equation:

sGB ¼
2

3

req
GB

d
eq
GB

d
vp
GB ð4Þ

with

d
eq
GB ¼ Dsd

bd

Xb

kT

2d� w

d3
req

GB ð5Þ

Here sGB stands for the deviatoric Cauchy stress

tensor. d
eq
GB ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
3 d

vp
GB : d

vp
GB

q
denotes the (von Mises)

equivalent strain rate and req
GB ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3
2 sGB : sGB

q
the

equivalent stress in the grain boundary. Wb is the

atomic volume, Dsd
bd the grain boundary diffusivity, k

the Boltzmann constant and T the absolute tempera-

ture. The grain boundary thickness w was assumed to

be constant, regardless of the grain size, w = 1 nm

being a generally accepted value.

Whereas the deformation mechanism in the grain

boundary phase was modelled as a purely diffusion-

controlled one, that of the grain interior was consid-

ered to be comprised by three contributions to the

plastic flow operating in parallel, namely the disloca-

tion glide mechanism, the Coble creep and the Nab-

arro–Herring creep.

Similarly to the grain boundary phase, the crystal-

line phase is described by the following equation:

_sGI ¼ 2lGIðdGI � d
vp
GIÞ ð6Þ

where the subscript GI refers to quantities relating to the

grain interior (crystallite). As for the grain boundary

phase, the viscoplastic behavior of the crystallite follows

a J2 flow law, similar to Eq. 4. The total plastic strain rate

tensor, d
vp
GI, for the grain interior is assumed to be made

up by three additive contributions:

d
vp
GI ¼ ddisl

GI þ dCo
GI þ dNH

GI ð7Þ

where ddisl
GI represents the plastic strain rate tensor due

to dislocation activity, dCo
GI is the corresponding tensor

associated with the Coble creep and dNH
GI that for the

Nabarro–Herring creep.

To describe the dislocation contribution to the

deformation of the grain interior, a dislocation density

related unified constitutive model [25] is used. The

equivalent plastic strain rate due to dislocation glide

d
disl�eq
GI is expressed in terms of the equivalent stress in

the grain interior, req
GI , through a power-law:

d
disl�eq
GI ¼ d�

req
GI

ro

� �m
q
qo

� ��m
2

ð8Þ

where 1/m represents the strain rate sensitivity of the

flow stress. d* and ro are scaling parameters and q is

the dislocation density with the initial value qo. The

evolution law for the dislocation density is written as in

[2]:
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dq
dt
¼ d

disl�eq
GI qo C þ C1

ffiffiffiffiffi
q
qo

r
� C2

d
disl�eq
GI

d1

 !�1
n
q
qo

0
@

1
A

ð9Þ

It accounts for storage and concurrent annihilation of

dislocations. Here C, C1, C2, d1 and n are constants.

Representative values for pure copper are available in

the literature and are summarized in Table 1. The

quantity C accounts for the dislocation storage

associated with impermeable grain boundaries and is

inversely proportional to the average grain size [2]:

C ¼Mb
�d

MalGI

ro

� �2

ð10Þ

Here b is the Burgers vector, M the Taylor factor and a
a numerical constant. For coarse-grained, single-phase

materials, C can be set to zero.

The equivalent plastic strain rate associated with

lattice diffusion follows the classical Nabarro–Herring

relation:

d
NH�eq
GI ¼ 14

XbDsd
ld w

kTd2
req

GI ð11Þ

where Dsd
ld represents the lattice diffusivity. Finally, the

contribution due to the Coble mechanism is expressed

as:

d
Co�eq
GI ¼ 14p

XbDsd
bdw

kTd3
req

GI ð12Þ

To summarize, the proposed model is an extension of

the Kim et al. [2] approach where elasticity has now

been fully integrated. The macroscopic deviatoric

stress S is derived as an average of the microscopic

stress s over the volume V of the aggregate:

S ¼ 1

V

Z
V

sdV ð13Þ

If all grains in the nanocrystalline material are of the

same size, then Eq. 13 leads to:

S ¼ f sGI þ ð1� f ÞsGB ð14Þ

where f = (d–w)3/d3 is the volume fraction of the

crystallite phase in a nanocrystalline grain.

Results

Macroscopic behavior of nanocrystalline copper

Experimental observations [23–26] have shown that

grain sizes in a nanocrystalline material fluctuate

strongly in the volume.To describe the scatter in size,

the log-normal distribution law (1) is adopted. A

discretization of the continuous distribution is pro-

posed in the following. For a given mean grain size �d ,

the nanocrystalline material is described as an aggre-

gate of N (N >> 1) families with the grain size in the

interval ½0:15�d� 3:15�d� . A uniform grain size from

within this interval is attributed to each family. The

density of grains for the i-th (1 £ i £ N) family, with

the grain size di ¼ 0:15�dþ 3ð2i�1Þ�d
2N ascribed to it, is

given by:

DensðdiÞ ¼
Z diþ 3�d

2N

di� 3�d
2N

PðxÞdx ð15Þ

Figure 2 presents the discretization scheme adopted

in the calculations, with N = 30, �d ¼ 26 nm and for

three different variance values. A larger variance leads

to a broader distribution and therefore to a higher

heterogeneity of grain sizes. It has been observed that

the number of families involved in the discretization

has little influence on the overall behavior when N is

larger than 10. The effect of the variance on the

macroscopic behavior is illustred in Fig. 3. The mate-

rial is subjected to the following macroscopic strain

rate corresponding to uniaxial tensile loading, for an

isotropic incompressible material:

D ¼ Do

1 0 0
0 �0:5 0
0 0 �0:5

2
4

3
5 ð16Þ

Note that Do represents the equivalent macroscopic

strain rate. Figure 3 shows predictions with regard to

the macroscopic behavior of nanocrystalline copper

Table 1 Parameter values used in the calculations, see Kim et al. [2]

Dsd
bd ¼ 2:6 � 10�20m2=s Dsd

ld ¼ 1:51 � 10�40 m2=s ro = 180 MPa d� ¼ 0:005=s d1 = 1/s
m = 230 lGB ¼ 25:26 GPa lGI = 42.1GPa w = 1 nm C1 = 52.86
C2 = 18.5 n = 21.2 b = 0.256 nm M = 3.06 a = 0.33
Xb ¼ 1:18 � 10�29 m3 k = 1.38 *10–23 J/K T = 300 K
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during uniaxial tensile loading with Do = 10–3 s–1.

Materials with two different values of the mean grain

size, �d ¼ 26 nm and �d ¼ 49 nm , for which experi-

mental data are available (shown in Fig. 4), were

considered. The grain size distribution can strongly

vary depending on the processing route used to

produce the nanocrystalline material. To capture this

effect, for a fixed mean grain size �d , the variance was

varied (~r ¼ 10; 50; 100 nm2). The predicted macro-

scopic behavior of the nanocrystalline material made

up of grains of uniform size is also presented in this

figure. For a nanocrystalline material with �d ¼ 26 nm ,

the grain size distribution has a significant influence on

the stress-strain curves. Thus, a 7% difference in stress

was observed at 0.03 total longitudinal strain when

comparing the material with a broad grain size distri-

bution ( ~r ¼ 100 nm2) with that with a uniform grain

size. For larger mean grain size, �d ¼ 49 nm, the effect

of the distribution shape is negligible, as seen from the

results of the simulation, cf. Fig. 3.

With this observation in mind, in the following, the

effect of the grain size distribution will be disregarded,

i.e. a nanocrystalline material will be considered to

have uniform grain size. Since the macroscopic loading

is given by relation (16) which corresponds to uniaxial

tension, and since all grains have the same size, the

macroscopic stress is given by Eq. 14. Accordingly, the

equivalent macroscopic stress Seq, which corresponds to

the uniaxial tensile stress, is defined as, see Appendix B:

Req ¼ freq
GI þ ð1� f Þreq

GB ð17Þ

Figure 4 presents stress–strain curves of nanocrys-

talline copper obtained using the proposed elastic-

viscoplastic approach. The macroscopic strain rate

corresponds to uniaxial tensile test, see Eq. 16 with

-

-
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Fig. 3 Effect of the grain size distribution on the macroscopic
behavior of the nanocrystalline copper, for different average
grain sizes �d and variances ~r . Note the weak effect of ~r for
large grain size
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Fig. 4 Stress vs strain curves for copper. The grain size is
varied from 26 to 2000 nm. The macroscopic strain rate
corresponds to uniaxial tensile test, see Eq. 16 with Do = 10–

3 s–1. The predictions based on the elastic-viscoplastic model
are compared with the measurements by Sanders et al. [27]
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Fig. 2 Discretisation scheme adopted for the log-normal distri-
bution law. The aggregate is made of 30 families. Each grain in
a family has identical grain size. The density of grains in a
family is given by Eq. 15 and is represented by the area in a
vertical bin. In the present example, the average grain size is
�d ¼ 26 nm and three different values of the variance are
adopted: ~r ¼ 10; 50; 100 nm2
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Do = 10–3 s–1. The predictions are compared with the

experimental results of Sanders et al. [27]. A reason-

able agreement between simulations and experiments

is observed for limited strain (below 0.01 total strain).

The response at large strain is not accurately predicted

for the nanomaterial having an average grain size of

110 nm. Since our attention is mainly focused on the

grain size dependence of the yield stress, the proposed

constitutive model appears to be adequate.

Hall–Petch and Inverse Hall–Petch behavior

Classically, the yield stress of materials increases with

grain size refinement and follows a Hall–Petch rela-

tion. However, as the grain size enters the nanometer

range, deviations from the Hall–Petch behaviour have

often been observed. An inverse Hall–Petch behavi-

our, i.e. a decrease of the flow stress on further grain

refinement has been reported, cf. [1, 28]. While there is

still some debate on whether this anomaly is a genuine

effect or an artefact associated with imperfections

introduced by specimen preparation (van Swygenho-

ven and Weertman [29]), numerous models have been

put forward to capture the inverse Hall–Petch behav-

iour (for recent discussions, see [1, 30, 31]). Kim et al.

[2], neglecting elasticity, were able to predict this

effect. However, some ad hoc assumptions, including

the introduction of an artificial cut-off grain size for the

dislocation activity and an assumed value of the yield

stress of the grain boundary phase were necessary.

Indeed, dislocation glide is difficult or impossible when

the grain size is below about 8 nm in copper (cut-off

value adopted by [2] for the dislocation activity).

Besides, the mechanical behavior of the grain bound-

ary phase is described by Eq. 5. As the grain size

increases, the level of the flow stress reaches unrea-

sonably large values. Accordingly, a saturation of the

flow stress of the grain boundary phase on grain size

increase was assumed by [2]. In addition, since elasti-

city was not included, Kim et al. [2] calculated the yield

strength as the stress at 0.2% offset strain. This is

clearly different from the definition of the experimen-

tal value which is defined as the yield stress at 0.2%

plastic strain. In the present work, to be consistent with

the definition of the yield stress, loading and unloading

simulations were performed. The maximum total strain

during the loading was adjusted so as to obtain a 0.2%

residual plastic strain at zero stress level.

The maximum stress during loading represents the

yield stress, see Fig. 5. Note that for large grain size,

the unloading response is clearly elastic, while for small

grain size (10 nm on Fig.5), the material behaves like a

viscoelastic one, indicating a change in the deformation

mode. This change will be associated with the extinc-

tion of the dislocation glide contribution for small grain

size.

The evolution of the yield stress versus d–1/2 is

presented on Fig. 6. As before, macroscopic loading

corresponds to uniaxial tension with Do ¼ 10�3 s�1 .

Clearly, both the Hall–Petch and the inverse Hall–

Petch type behaviors are present. For average grain

size over 20 nm, the flow stress increases with grain

refinement. Below 20 nm, the reverse trend is

observed. The results were obtained with the param-

eter values presented in Table 1. On this figure, yield

stresses measured by [27] are shown for validation. A

fairly good agreement is seen. A better fit can be

obtained by modifying some parameters, viz. with

ro = 250 MPa and DGB
sd = 5 � 10–20m2/s. In the litera-

ture, a great deal of data on the grain size dependence

of stress in nanocrystalline Cu are available, cf. the

compilations in [1, 26, 32, 33]. However, these data are

too diverse to be suitable for a comparison with a

particular model calculation. Not only do they refer to

materials of different provenience, but they often

correspond to various strains and strain rates and are

not always representative of the yield stress. Most of

the compilations refer to the pioneering work by

Sanders et al. [27], but in many cases, e.g. [32], the

yield stresses recalculated from the hardness data are

quoted. It was shown in [27] that the latter are higher

than the true yield stresses obtained directly from
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Fig. 5 Tensile loading and unloading for different grain sizes.
The macroscopic strain-rate tensor corresponds to uniaxial
tension: Do = 10–3 s–1 for loading and Do = –10–3 s–1 for unload-
ing. The maximum total strain is adjusted for each material so as
to obtain a 0.2% residual strain at zero stress level. The
maximum stress represents the yield stress r0.2% at 0.2% offset
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stress–strain curves. We therefore used the original

yield stress data from [27] as a basis for validation of

the model predictions. Other models available in the

literature are able to predict the inverse Hall–Petch

behavior for nanomaterials. For example, the work of

Jiang and Weng [10] can be mentioned. With a

generalized self-consistent approach and specific

behaviors of the grain interior and grain boundary

phases, they obtained results also in close agreement

with [27], see Fig. 5 of [10]. However, the same cut-off

value as in [2] was adopted in [10] for the plastic

behavior of the grain interior phase. In our approach,

no cut-off parameter is necessary to reproduce the

measured yield stresses with good accuracy.

Figure 7 compares the Taylor–Lin approach with a

Taylor scheme (no elasticity). For large grain size, the

yield stress reaches unrealistically high values. Under a

rigid Taylor scheme, the viscoplastic strain rate is equal

to the macroscopic strain rate. For large grain size (f �
1), the diffusion activity in the crystallite almost

disappears and thus ddisl
GI ¼ D . As a consequence the

term f sGI in Eq. 14 is scaled by roðDeq=D�Þm which is

naturally bound. The origin of the high flow stress level

is due to the grain boundary behavior described by

Eqs. 4 and 5. It can be easily proved that, for large

grain material, the term ð1� f ÞsGB is proportional to

the grain size d. As a consequence, to obtain realistic

prediction using rigid Taylor scheme, a saturation of

the grain boundary flow stress is needed. As already

mentioned, [2] used such a saturation assumption, see

Figs. 8 and 9 of their article. In that spirit, to saturate

the GB flow stress level (used only for the rigid Taylor

scheme), the term d in Eq. 4 is replaced by

d = inf(d,dc), dc representing a cut-off value. Two
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2%
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Fig. 7 Predictions of the yield stress r0.2 obtained using the
Taylor–Lin and the Taylor approaches. With the Taylor
approach, the introduction of a saturation of the flow stress of
the grain boundary phase is necessary to reproduce experimental
data. The Taylor–Lin approach that includes elasticity is able to
predict the experiments correctly, without any extra assumptions
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Fig. 8 Evolution of the yield stress for different macroscopic
loading rates. The transition point from a Hall–Petch regime to
an inverse Hall-Petch trend moves towards smaller grain sizes as
strain rate increases
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Fig. 6 Hall–Petch behavior of nanocrystalline copper. The
macroscopic strain rate tensor corresponds to uniaxial tension
with Do = 10–3 s–1. The yield stress is defined as the stress for a
residual strain of 0.2% and is calculated as illustrated in Fig. 5. A
fairly good agreement with the experiments of Sanders et al. [27] is
obtained. The material parameters available in the literature are
summarised in Table 1. A better fit is proposed for a different set of
parameters: ro = 250 MPa and DGB

sd = 5 � 10–20m2/s
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different values of dc were tested and the correspond-

ing predictions are presented in Fig. 7. For a reason-

able choice of dc ¼ 8 nm and with Do ¼ 10�3 s�1 , [2],

the viscoplastic Taylor scheme (without elasticity)

appears to give realistic predictions. However, the

present Taylor-Lin homogenisation scheme is prefer-

able as it does not require the use of such cut-off

parameters.

The effect of the loading rate is investigated in

Fig. 8. As the strain rate increases, the transition from

a Hall–Petch to an inverse Hall–Petch trend moves to

smaller grain sizes. To explain this effect, it is impor-

tant to identify the relative contributions of dislocation

glide and diffusion to the plastic deformation of the

crystallite, see Fig. 9. From numerical simulations, it

appears that the Nabarro–Herring creep has almost no

influence on the deformation of the crystallite, so that

the prevalent diffusion-controlled mechanism in the

crystallite is the Coble creep. As the strain rate

increases, the dislocation glide mechanism remains

active also for small grain size. Coble creep and

dislocation glide are acting in parallel. The same stress

req
GI operates for each deformation mechanism. From

Eqs. 8 and 12, one obtains:

req
GI ¼

kTd3

14pXbwDsd
bd

d
Co�eq
GI ¼ ro

d
disl�eq
GI

d�

 ! 1
m ffiffiffiffiffi

q
qo

r
ð18Þ

For a given grain size, as the macroscopic strain

rate increases, the stress level in the crystallite

increases only slightly, as m is large and q does not

evolve strongly for low strain. Therefore, the strain

rate d
Co�eq
GI associated with the Coble creep is almost

unchanged. Due to the increase of the total strain

rate, the total plastic strain rate inside the crystallite

increases as well, so that the dislocation contribution

is enhanced, see Fig. 9. With similar arguments, for a

given total strain rate, as the grain size increases, the

level of the flow stress req
GI will not change strongly.

From the expression for the Coble creep, Eq. 18, it is

seen that dGI
Co-eq decreases and thus the contribution of

dGI
disl-eq must increase. To summarize, for high strain

rates and/or large grain sizes, dislocation glide is the

major mechanism for the plastic deformation of the

crystallite, see Fig. 9. The change in dominant plastic

deformation mechanism in the crystallite leads to the

transition from a Hall–Petch to an inverse Hall–Petch

behavior. From Fig. 8, the grain size dtr corresponding

to the transition decreases from 85 nm at 10–5 s–1 to

6 nm at 0.1 s–1. For strain rate larger than 1 s–1, no

inverse Hall–Petch trend is predicted. An approxi-

mate relationship between dtr and Do is derived in

Appendix A:

d7
trD

2
o ¼ const ð19Þ

Figure 10 shows a close agreement between the dtr

values obtained with the proposed model and with Eq.

19. Note that the value of the constant on the right-

Macroscopic strain rate Do, s-1

g
ra

in
si

ze
tr

an
si

tio
n

d tr
,n

m

10-6 10-5 10-4 10-3 10-2 10-1

20

40

60

80
100

Taylor-Lin calculations
Approximate relationship

Fig. 10 Variation of the transition grain size dtr with the
macroscopic strain rate. The transition grain size separating the
Hall–Petch from the inverse Hall–Petch regime decreases with
increasing strain rate. The relation D2

od7
tr ¼ const derived in

Appendix A appears to be a good approximation compared to
predictions with the Taylor–Lin model
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Fig. 9 Variation of the relative contribution of the dislocation
glide and diffusion (mainly Coble creep) in the crystallite.
Macroscopic strain rate is varied from 10–5 s–1 to 1 s–1. For high
strain rates and/or for large grain sizes, dislocation glide is the
predominant plastic deformation mode in the crystallite
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hand side of Eq. 19 has been identified considering that

dtr = 20 nm at Do ¼ 10�3 s�1.

Finally, the variation of the global strain rate

sensitivity defined as @ log Seq

@ log Deq

� �
e

is considered for

different grain sizes. The strain rate sensitivity is

calculated for a given total strain e = 0.01. As already

mentioned, for large strain rate or large grain size the

predominant plastic deformation mechanism in the

crystallite is dislocation glide. The attendant strain rate

sensitivity of the flow stress is close to 1/230, see zoom

in Fig. 11. For low loading rates and/or small grain

sizes, the diffusion-controlled mechanism (Coble

creep) is predominant. Thus, the corresponding strain

rate sensitivity increases. These results are in keeping

with those obtained by [3] using the Taylor approach

(without elasticity). From experiments, macroscopic

strain rate sensitivities were evaluated from tensile

stress–strain curves at different loading rates. An

increase of the strain rate sensitivity of the flow stress

for nanocrystalline materials as compared with that for

coarse grained materials was also observed experimen-

tally, cf. [26]. In their work, the authors observed that

the nanocrystalline material with an average grain size

of 62 nm had a strain rate sensitivity of 0.027, whereas

for coarse-grained copper, the strain rate sensitivity was

0.006. A similar effect of the grain size on the strain rate

sensitivity of the flow stress of Al was observed by [34],

see also [1]. Values close to unity expected from the

present model for very small grain sizes and low strain

rates have never been observed, which means that

further improvements of modelling are still needed.

The role of diffusion-controlled mechanisms, which in

the limit of very small grain size should yield a strain-

rate sensitivity tending to unity, appears to have been

overestimated in the present modelling.

Conclusion

An extension of models proposed by Kim et al. [2] and

Kim and Estrin [3] has been presented. The major

contribution of the present study consists in the

introduction of elasticity in the material description.

With elasticity, the yield stress can be evaluated with

better accuracy. A comparison with experiments of

Sanders et al. [27] yields a fairly good agreement. The

transition from a Hall–Petch regime to an inverse trend

has been explained by the change in plastic deformation

mode in the crystallite phase from a dislocation glide

driven mechanism to a diffusion-controlled process. A

relation between transition grain size and macroscopic

strain rate has been derived. The present approach

seems to be reasonable for estimating macroscopic

mechanical behavior and the related properties at small

strain. Improvements need to be made to provide a

physically based model for large strain as well.
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Appendix A: Relation between the transition grain size
dtr and loading rate Do

The transition from the Hall–Petch to an inverse Hall–

Petch behavior with a decrease in the grain size is due

to a change in the plastic deformation mechanism in

the crystallite phase, see Figs. 8 and 9. For coarse

grained materials, dislocation glide is predominant,

while for fine grained ones, diffusion-controlled Coble

creep is the main deformation mechanism. Based on

Figs. 8 and 9, one can postulate that the transition

occurs when the two modes of deformation contribute

almost equally to the total viscoplastic strain rate of the

crystallite. Thus the transition occurs when the follow-

ing condition is fulfilled:

d
disl�eq
GI ¼ d

Co�eq
GI ð20Þ

From relation (18), the dislocation strain rate

d
disl�eq
GI can be linked to the Coble creep rate d

Co�eq
GI .
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Fig. 11 Strain rate sensitivity of the flow stress at 1% total strain
as a function of the macroscopic strain rate Do. The dependence
is presented for different grain sizes, from the nanometer up to
the micrometer range. For large strain rates, the dislocation glide
is prevalent, so that low values of the strain rate sentivity are
observed. As the strain rate decreases, the contribution of the
diffusion-controlled mechanism increases, and so does the strain
rate sensitivity
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Then using relation (20), the equivalent total plastic

strain rate d
vp�eq
GI , as defined by Eq. 7 is expressed

(neglecting the Nabarro-Herring creep contribution) as

a function of the Coble creep strain rate d
Co�eq
GI :

d
vp�eq
GI ¼ 2d�

kTd3
tr

14pXbDsd
bdwro

d
Co�eq
GI

� �m
q
qo

� ��m
2

ð21Þ

Here, dtr is the transition grain size for which

relation (20) is satisfied. Due to elasticity, the total

plastic strain rate in the crystallite is lower than the

total macroscopic strain rate Do. A scalar b is intro-

duced so that:

d
vp�eq
GI ¼ bDo ð22Þ

The last term to be evaluated is q/qo. Considering

that the dominant term for small strain in Eq. 7 is

related to the constant C and that C is large for a

nanocrystalline material, the dislocation density is

approximately proportional to the inverse of the grain

size dtr:

q
qo

¼ K

dtr
ð23Þ

Therefore, combining Eqs 22 and 23, one obtains the

following relation between Do and dtr:

b
Do

2
¼ d�

kTd3
tr

28pXbDsd
bdwro

bDo

� �m
K

dtr

� ��m
2

ð24Þ

Since m is much larger than unity, this equation

leads to:

ðbDoÞ2 ¼
28pXbDsd

bdwro

kTd3
tr

� �2
K

dtr
ð25Þ

Finally, assuming that b and K will not vary strongly

with loading conditions, one obtains:

D2
od7

tr ¼ const ð26Þ

Appendix B: Relationship between equivalent stresses

During uniaxial tensile loading, the material is sub-

jected to the following macroscopic stress:

R ¼
R11 0 0
0 0 0
0 0 0

2
4

3
5 ð27Þ

In the present work, the material is assumed

isotropic. Since the loading is axisymetric and due to

the Taylor–Lin assumption for which the local strain

rate in each phase is equal to the macroscopic strain

rate, the stress state in the grain interior can be written

as:

rGI ¼
rGI

11 0 0

0 rGI
22 0

0 0 rGI
22

2
64

3
75 ð28Þ

The stress state in the grain boundary is given by Eq.

28 replacing the superscript GI by GB. With volume

averaging, the macroscopic stress R is linked to

stresses rGI and rGB in the two phases by:

R ¼ frGI þ ð1� f ÞrGB ð29Þ

Here, f represents the volume fraction of the grain

interior. By combination of Eqs. 28 and 29, one

obtains:

R11 ¼ frGI
11 þ ð1� f ÞrGB

11 ; frGI
22 þ ð1� f ÞrGB

22 ¼ 0

ð30Þ

The grain interior and grain boundary phases are

not subjected to uniaxial tensile loading. Nevertheless,

the volume average of the microscopic stresses resti-

tutes a stress tensor of uniaxial tension.

The deviatoric Cauchy stress tensor in the grain

interior sGI , obtained from relation (28) is given by:

sGI ¼
2
3 req

GI 0 0

0 � 1
3 req

GI 0

0 0 � 1
3 req

GI

2
4

3
5 ð31Þ

with req
GI ¼ rGI

11 � rGI
22 being the equivalent stress in the

grain interior phase. The same expression is valid for

sGB with replacing GI by GB in expression (31). Using

Eq. 14, the macroscopic deviatoric Cauchy stress

components are:

S11 ¼
2

3
ðfreq

GI þ ð1� f Þreq
GBÞ S22 ¼ �

S11

2
S33 ¼ �

S11

2

ð32Þ
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The equivalent macroscopic stress Seq has the form:

Req ¼ freq
GI þ ð1� f Þreq

GB ð33Þ
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